	Set theory - Winter	semester 2016-17
Problems		Prof. Peter Koepke
Series 9		Dr. Philipp Schlicht

Problem 37 (4 points). Suppose that κ is an uncountable regular cardinal and $f: \kappa \to \kappa$ is a function. Then there is a stationary subset S of κ such that $f \upharpoonright S$ is constant or $f \upharpoonright S$ is injective.

Problem 38 (4 points). Suppose that $\kappa > \omega$ is a regular cardinal. A function $f: \kappa \to \kappa$ is called *normal* if it is strictly monotone and continuous. Prove the following statements.

- (1) If $f: \kappa \to \kappa$ is normal, then $f[\kappa]$ is club in κ .
- (2) If C is club in κ , then the strictly monotone enumeration $f : \kappa \to \kappa$ of C is normal.

Problem 39 (6 points). Suppose that $\kappa > \omega$ is a regular cardinal. For every function $f: \kappa \to \kappa$, the set C_f of *closure points* of f is defined as

$$C_f = \{ \alpha < \kappa \mid f[\alpha] \subseteq \alpha, \ \alpha > 0 \}.$$

Prove the following statements.

- (1) (a) If $f: \kappa \to \kappa$ is a function, then C_f is club in κ .
 - (b) If C is club in κ , then there is a function $f \colon \kappa \to \kappa$ with $C_f \subseteq C$.
- (2) If $f: \kappa \to \kappa$ is normal, then the set

$$Fix(f) = \{ \alpha < \kappa \mid f(\alpha) = \alpha \}$$

of fixed points of f is club in κ .

Problem 40 (8 points). Suppose that κ is a singular cardinal of uncountable cofinality and $\langle \kappa_{\alpha} \mid \alpha < \operatorname{cof}(\kappa) \rangle$ is a strictly increasing continuous cofinal sequence of cardinals below κ . Prove the following statements.

- (1) If $\mathcal{F} \subseteq \prod_{\alpha < \operatorname{cof}(\kappa)} A_{\alpha}$ is almost disjoint and $\operatorname{card}(A_{\alpha}) \leq \kappa_{\alpha}^{++}$ for all $\alpha < \operatorname{cof}(\kappa)$, then $\operatorname{card}(\mathcal{F}) \leq \kappa^{++}$.
- (2) If $2^{\mu} \leq \mu^{++}$ for all infinite cardinals $\mu < \kappa$, then $2^{\kappa} \leq \kappa^{++}$.

(Hint: adapt the proof of Lemma 156 from the lecture.)

Due Friday, December 23, before the lecture.